Перевод: со всех языков на все языки

со всех языков на все языки

режим основного управления

  • 1 режим основного управления

    Information technology: BC mode

    Универсальный русско-английский словарь > режим основного управления

  • 2 BC mode

    English-Russian information technology > BC mode

  • 3 BC mode

    Вычислительная техника: режим основного управления

    Универсальный англо-русский словарь > BC mode

  • 4 BC mode

    Англо-русский словарь промышленной и научной лексики > BC mode

  • 5 on-line mode

    1) Компьютерная техника: интерактивный режим
    2) Техника: диалоговый режим, диалоговый режимы резания, неавтономный режимы резания, оперативный режим, оперативный режимы резания, режим "он-лайн", управляемый режим, режим работы в реальном масштабе времени, режим работы под управлением центральной ЭВМ, системный режим, системный режимы резания, способ работы с управлением от основного оборудования, режим соединений (в сетях)
    6) Атомная энергия: режим реального времени
    8) Сетевые технологии: неавтономный режим, режим "онлайн", режим работы под управлением основного оборудования
    10) Химическое оружие: режим ON LINE (режим работы в реальном масштабе времени; оперативный режим управления)
    12) Безопасность: режим "он-лайн"

    Универсальный англо-русский словарь > on-line mode

  • 6 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 7 three-phase UPS

    1. трехфазный источник бесперебойного питания (ИБП)

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > three-phase UPS

  • 8 on-line

    [ˌɒn'laɪn]
    1) Общая лексика: подключённый
    5) Техника: в истинном масштабе времени, диалоговый режим, диалоговый режимы резания, линейная расстановка, на ходу, оперативный режим, оперативный режим работы, оперативный режимы резания, подключённый к системе, работающий в истинном масштабе времени, работающий в реальном времени, работающий в режиме "он-лайн", работающий от основного оборудования, работающий совместно с основным оборудованием, режим работы под управлением центральной ЭВМ, с управлением от основного оборудования, системный режим, системный режимы резания, совместно с основным оборудованием, в режиме реального времени
    6) Железнодорожный термин: включённый, обслуживаемый, работающий
    7) Экономика: он-лайн
    9) Вычислительная техника: интерактивно, неавтономный (о режиме функционирования вычислительной системы), постоянно действующий, работающий в реальном масштабе времени, работающий в режиме онлайн, работающий в темпе поступления информации, работающий под управлением основного оборудования, сетевой, (работающий) под управление основного оборудования, (работающий)(работающий) в режиме онлайн
    11) Генетика: (процессный анализатор) «на линии» (процессная измерительная система для мониторинга критических параметров в реальном или около реальном времени (например, on-, in- или at-line))
    13) Атомная энергия: встроенный
    15) Глоссарий компании Сахалин Энерджи: поточный
    17) Автоматика: (работающий) в режиме онлайн, в реальном ( масштабе) времени, интерактивный режим, работающий в интерактивном режиме, режим онлайн, у станка, на действующем оборудовании (напр. о подготовке УП)
    19) Прокат: в потоке
    22) Нефть и газ: последовательно

    Универсальный англо-русский словарь > on-line

  • 9 off-line

    ['ɒflaɪn]
    1) Общая лексика: автономный( внесетевой) режим
    4) Техника: автономный режим, вне комплекса, в автономном режиме
    7) Нефть: отклонившийся от заданного направления (о скважине), расположенный не по центру
    9) Бурение: не соосный
    10) Сетевые технологии: отключённый
    11) Автоматика: автономный режим работы, вне станка, вне цеха, вышедший из строя, режим офлайн, простаивающий (напр. о станке)
    15) SAP.тех. в режиме офлайн, офлайновый

    Универсальный англо-русский словарь > off-line

  • 10 SCM

    1. управление цепочками поставок
    2. управление поставками
    3. управление мощностями услуг
    4. уплотнение поднесущей
    5. рынок мелких компаний
    6. режим конденсации пара
    7. память (запоминающее устройство) небольшой емкости на (магнитных) сердечниках
    8. модуляция отдельной несущей
    9. менеджер управления услугой
    10. концепция стратегического управления издержками
    11. выбранный режим связи

     

    выбранный режим связи
    (МСЭ-Т Н.225).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    концепция стратегического управления издержками
    Появление SCM явилось результатом слияния трех направлений стратегического менеджмента:
    1. Анализ цепочек ценностей.
    2. Стратегическое позиционирование.
    3. Анализ и управления факторами, определяющими затраты.
    Под цепочкой ценностей понимают согласованный набор видов деятельности, создающих ценность для предприятия, начиная от исходных источников сырья для поставщиков данного предприятия вплоть до готовой продукции, доставленной конечному пользователю, включая обслуживание потребителя. Акцент делается не только на процессах, происходящих внутри фирмы, а гораздо более широко, выходя за рамки конкретного предприятия.
    Стратегическое позиционирование влияет на процессы управления издержками предприятия в зависимости от его стратегического выбора создания конкурентных преимуществ. Согласно Портеру, предприятие может добиться успеха в конкурентном соперничестве
    либо поддерживая низкие затраты (лидерство на основе затрат)
    либо предлагая потребителям разнообразную, превосходящую конкурентов, продукцию (стратегия дифференциации продукции).
    Совершенно очевидно, что подходы к управлению издержками будут различаться в зависимости от стратегического позиционирования.
    Список затратообразующих факторов далеко не исчерпывается носителями издержек, которые соответствуют определенным этапам бизнес-процессов и элементам деятельности в ABC-анализе. Эти факторы подразделяются на структурные и функциональные и имеют достаточно высокую степень общности. Например, один из наиболее важных функциональных факторов - это фактор вовлеченности рабочей силы, который состоит в степени принятия работниками на себя обязательств по постоянному усовершенствованию. Затратобразующие факторы также зависят от стратегической ориентации предприятия, которая состоит в выборе: быть лидером в своей отрасли или двигаться вслед за лидером.
    Отличие традиционного подхода к управлению издержками от SCM состоит в принципиально другом мировоззрении в отношении к процессу управления издержками:
    Отличие с точки зрения цели. Целью в рамках традиционного подхода является снижение издержек любыми путями, как основной способ удержания и завоевания конкурентных преимуществ. В рамках SCM эта цель также имеет место, но планирование системы управления затратами резко меняется в зависимости от основного стратегического позиционирования предприятия: лидерство по затратам или дифференциация продукции. Более того, в рамках каждого из стратегических направлений возможно планирование увеличения значения издержек на каком-либо участке цепочки ценностей, если это вызовет адекватное снижение издержек для других участков либо принесет фирме некоторое другое конкурентное преимущество.
    Отличие с точки зрения способов анализа издержек. В традиционном подходе производится оценка суммы затрат (себестоимости), приходящихся на единицу продукции или производственное подразделение. Таким образом, акцент делается на внутреннее положение предприятия. Концепция добавленной ценности (или стоимости) играет ключевую роль. Напомним, что согласно этой концепции все виды деятельности, приводящие к издержкам, подразделяются на таковые, которые приносят дополнительную ценность (и, следовательно, их наличие оправдано) и не приносящие дополнительную ценность. Последние рассматриваются как наиболее перспективные с точки зрения снижения затрат. В рамках SCM стоимость рассматривается с точки зрения различных этапов общей цепочки ценностей, частью которой являются предприятии и его подразделение. Концепция же добавленной стоимости рассматривается как очень узкая и даже опасная.
    Отличия с точки зрения описания поведения затрат. В рамках традиционной системы издержки рассматриваются главным образом как функция объема продукции. И в связи с этим производится обстоятельный анализ переменных, постоянных и смешанных издержек. Объем продукции рассматривается как критический фактор образования затрат. С позиций SCM затраты прежде всего зависят от стратегического выбора. И в этой связи затраты являются функцией гораздо более общих структурных и функциональных факторов.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    менеджер управления услугой

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    модуляция отдельной несущей
    (МСЭ-Т Н.610).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    память (запоминающее устройство) небольшой емкости на (магнитных) сердечниках

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    режим конденсации пара

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рынок мелких компаний
    Рынок ценных бумаг и акций, некотируемых на основной бирже (unlisted securities) в Ирландии.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

     

    уплотнение поднесущей
    (МСЭ-Т G.983.3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    управление мощностями услуг
    SCM

    (ITIL Continual Service Improvement)
    (ITIL Service Design)
    Подпроцесс управления мощностями, отвечающий за понимание производительности и мощности ИТ-услуг. Информация о ресурсах, используемых каждой ИТ-услугой, и профилях использования накапливается, фиксируется и анализируется для использования в плане обеспечения мощностей.
    См. тж. управление мощностями бизнеса; управление мощностями компонентов.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    service capacity management
    SCM

    (ITIL Continual Service Improvement)
    (ITIL Service Design)
    The sub-process of capacity management responsible for understanding the performance and capacity of IT services. Information on the resources used by each IT service and the pattern of usage over time are collected, recorded and analysed for use in the capacity plan.
    See also business capacity management; component capacity management.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

     

    управление поставками
    Управление цепочкой процессов, обеспечивающих выпуск продукции
    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    управление цепочками поставок
    Здесь цепочка поставок - это глобальная сеть, которая преобразует исходное сырье в продукты и услуги, необходимые конечному потребителю, используя спроектированный поток информации, материальных ценностей и денежных средств.
    Исследователи выделяют шесть основных областей, на которых сосредоточено управление цепочками поставок: Производство, Поставки, Месторасположение, Запасы, Транспортировка и Информация. Все решения по управлению цепочками поставок делятся на две категории: стратегические (strategic) и тактические (operational). Производство (Production).
    Компания решает, что именно и как производить.
    Стратегические решения относительно производства продукции (торговля и оказание услуг - это тоже вид производства) принимаются на основе изучения потребительского спроса. Тактические решения сосредоточены на планировании объемов производства, рабочей загрузки и обслуживания оборудования, контроле качества и т. д. Поставки (Supply).
    Затем компания должна определить, что она будет производить самостоятельно, а какие компоненты (комплектующие, товары или услуги) покупать у сторонних фирм.
    Стратегические решения касаются перечня приобретаемых компонентов и требований к их поставщикам относительно скорости, качества и гибкости поставок.
    Тактические же относятся к текущему управлению поставками для обеспечения необходимого уровня производства. Месторасположение (Location).
    Решения о месторасположении производственных мощностей, центров складирования и источников поставок полностью относятся к стратегическим. Они зависят от характера рынка, отраслевой специфики, а также от политической и экономической ситуации в регионе. Запасы (Inventory).
    Основная цель запасов - страхование от непредвиденных случаев, таких, как всплеск спроса или задержка поставок. Прогнозирование поведения потребителей, организация бесперебойного снабжения и гибкость производства, хотя, на первый взгляд, и не связаны с уровнем запасов, но на самом деле оказывают на него непосредственное влияние.
    Поэтому стратегические решения направлены на выработку политики компании в отношении запасов. К слову, среднестатистическое предприятие вкладывает в запасы около 30% всех своих активов (до 90% оборотных средств), а расходы на содержание запасов обходятся в 20--40% их стоимости. Тактические решения сосредоточены на поддержании оптимального уровня запасов в каждом узле сети для бесперебойного удовлетворения колебаний потребительского спроса. Транспортировка (Transportation). Решения, связанные с транспортировкой, в основном, относятся к стратегическим. Они зависят от месторасположения участников цепочки поставок, политики в отношении запасов и требуемого уровня обслуживания клиентов. Важно определить правильные способы и эффективные методы оперативного управления транспортировкой, так как эти операции составляют около 30% общих расходов на снабжение, и именно с опозданиями в доставке связано в среднем более 70% ошибок в распределении товаров. Информация (Information). Эффективное функционирование цепочки поставок невозможно без оперативного обмена данными между всеми ее участниками.
    Стратегические решения касаются источников информации, ее содержания, механизмов и средств распределения, а также правил доступа. Тактические решения направлены на интеграцию информационных систем участников цепочки поставок в общую инфраструктуру.
    В составе SCM-системы можно условно выделить две подсистемы
    SCP (Supply Chain Planning)
    Планирование цепочек поставок. Основу SCP составляют системы для расширенного планирования и формирования календарных графиков (APS). При изменении информации о прогнозах спроса, уровне запасов, сроках поставок, взаиморасположении торговых партнеров и т. д. APS-система позволяет оперативно проанализировать перемены и внести необходимые коррективы в расписание поставок и производства. В SCP также входят системы для совместной разработки прогнозов. Они ориентированы на торговые пары "поставщик-покупатель" и позволяют сравнивать информацию о прогнозах спроса, поступившую от покупателей, с прогнозами наличия необходимой продукции, полученной от поставщиков. Результатом является сбалансированный прогноз, согласованный с обеими заинтересованными сторонами. В основе работы этих систем лежит стандарт совместного планирования, прогнозирования и пополнения запасов (CPFR - Collaborative Planning, Forecasting and Replenishment -), разработанный ассоциацией VICS (Voluntary Interindustry Commerce Standards).
    Помимо решения задач оперативного управления, SCP-системы позволяют осуществлять стратегическое планирование структуры цепочки поставок: разрабатывать планы сети поставок, моделировать различные ситуации, оценивать уровень выполнения операций, сравнивать плановые и текущие показатели.
    SCE (Supply Chain Execution)
    Исполнение цепочек поставок. В подгруппу SCE входят TMS, WMS, OMS, а также MES-системы.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > SCM

  • 11 control

    control n
    управление
    acceleration control line flow restrictor
    дроссельный пакет линии управления приемистостью
    acceleration control unit
    автомат приемистости
    aerodrome approach control system
    система управления подходом к аэродрому
    aerodrome control
    управление в зоне аэродрома
    aerodrome control communication
    аэродромная командная связь
    aerodrome controlled zone
    зона, контролируемая авиадиспетчерской службой аэродрома
    aerodrome control point
    аэродромный диспетчерский пункт
    aerodrome control radar
    диспетчерский аэродромный радиолокатор
    aerodrome control radio
    аэродромная радиостанция командной связи
    aerodrome control sector
    зона контроля аэродрома диспетчерской службой
    aerodrome control service
    служба управления движением в зоне аэродрома
    aerodrome control tower
    аэродромный диспетчерский пункт
    aerodrome control tower clearance
    разрешение аэродромного диспетчерского пункта
    aerodrome control unit
    аэродромный диспетчерский пункт
    aerodrome traffic control zone
    зона аэродромного управления воздушным движением
    aerodynamic control
    управление с помощью аэродинамической поверхности
    aerodynamic roll control
    управление креном с помощью аэродинамической поверхности
    aeronautical information control
    аэронавигационное диспетчерское обслуживание
    aileron control system
    система управления элеронами
    aileron trim tab control system
    система управления триммером элерона
    air control
    диспетчерское обслуживание воздушного пространства
    aircraft control loss
    потеря управляемости воздушного судна
    aircraft control margin
    запас управляемости воздушного судна
    aircraft control system
    система управления воздушным судном
    aircraft control transfer
    передача управления воздушным судном
    aircraft sanitary control
    санитарный контроль воздушных судов
    air intake spike control
    управление конусом воздухозаборником
    air mixture control
    регулирование топливовоздушной смеси
    airport control tower
    командно-диспетчерский пункт аэрофлота
    air traffic control
    1. управление воздушным движением
    2. ответчик системы УВД Air Traffic Control Advisory Committee
    Консультативный комитет по управлению воздушным движением
    air traffic control area
    зона управления воздушным движением
    air traffic control boundary
    граница зоны управления воздушным движением
    air traffic control center
    диспетчерский центр управления воздушным движением
    air traffic control clearance
    разрешение службы управления воздушным движением
    air-traffic control instruction
    указания по управлению воздушным движением
    air traffic control loop
    цикл управления воздушным движением
    air traffic control procedures
    правила управления воздушным движением
    air traffic control radar
    радиолокатор управления воздушным движением
    air traffic control routing
    прокладка маршрута полета согласно указанию службы управления движением
    air traffic control service
    служба управления воздушным движением
    air traffic control system
    система управления воздушным движением
    air traffic control unit
    пункт управления воздушным движением
    airways control
    управление воздушным движением на трассе полета
    airworthiness control system
    система контроля за летной годностью
    altitude control unit
    высотный корректор
    amount of controls
    степень использования
    angle-of-attack control
    установка угла атаки
    angular position control
    управление по угловому отклонению
    antitorque control pedal
    педаль управления рулевым винтом
    approach control
    управление в зоне захода на посадку
    approach control point
    диспетчерский пункт захода на посадку
    approach control radar
    радиолокатор управления заходом на посадку
    approach control service
    диспетчерская служба захода на посадку
    approach control tower
    пункт управления заходом на посадку
    approach control unit
    диспетчерский пункт управления заходом на посадку
    area control
    управление в зоне
    area control center
    районный диспетчерский центр управления движением на авиатрассе
    area flight control
    районный диспетчерский пункт управления полетами
    assisted control
    управление с помощью гидроусилителей
    associated crop control operation
    контроль состояния посевов по пути выполнения основного задания
    associated fire control operation
    противопожарное патрулирование по пути выполнения основного задания
    assume the control
    брать управление на себя
    assumption of control message
    прием экипажем диспетчерского указания
    attitude control system
    система ориентации
    (в полете) attitude flight control
    управление пространственным положением
    automatic boost control
    автоматическое регулирование наддува
    automatic control
    автоматическое управление
    automatic exhaust temperature control
    автоматический регулятор температуры выходящих газов
    automatic flight control
    автоматическое управление полетом
    automatic flight control equipment
    оборудование автоматического управления полетом
    automatic flight control system
    автоматическая бортовая система управления
    automatic gain control
    автоматическая регулировка усиления
    automatic level control
    автоматическое управление уровнем
    automatic path control
    автоматический контроль траектории
    automatic volume control
    автоматическое регулирование громкости
    autopilot control
    управление с помощью автопилота
    autostart control unit
    автомат запуска
    backswept boundary layer controlled wing
    крыло с управляемым пограничным слоем
    balance the control surface
    балансировать поверхность управления
    bank control
    управление креном
    blanketing of controls
    затенение рулей
    bleed valve control mechanism
    механизм управления клапанами перепуска воздуха
    bleed valve control unit
    блок управления клапанами перепуска
    boundary layer control
    управление пограничным слоем
    brake control pedal
    педаль управления тормозами
    Budget Control Section
    Секция контроля за выполнением бюджета
    (ИКАО) bypass control
    управление перепуском топлива
    cabin temperature control system
    система регулирования температуры воздуха в кабине
    cable control
    тросовое управление
    cable control system
    система тросового управления
    cargo hatch control switch
    переключатель управления грузовым люком
    change-over to manual control
    переходить на ручное управление
    check control
    контрольный код
    clearance control
    таможенный досмотр
    collective pitch control
    управление общим шагом
    collective pitch control lever
    ручка шаг-газ
    collective pitch control rod
    тяга управления общим шагом
    collective pitch control system
    система управления общим шагом
    (несущего винта) constant altitude control
    выдерживание постоянной высоты
    control actuator
    исполнительный механизм управления
    control board
    пульт управления
    control booster
    усилитель системы управления
    control cable
    трос управления
    control cable fairlead
    направляющая тросовой проводки
    control cable pressure seal
    гермовывод троса управления
    control center
    диспетчерский центр
    control characteristic
    характеристика управляемости
    control circuit
    цепь управления
    control column
    штурвальная колонка
    control column elbow
    колено колонки штурвала
    control column gaiter
    чехол штурвальной колонки
    control communication
    связь для управления полетами
    control console
    пульт управления
    control desk
    пульт управления
    control force
    усилие в системе управления
    control gear
    ведущая шестерня
    control in transition
    управление на переходном режиме
    control lag
    запаздывание системы управления
    controlled aerodrome
    аэродром с командно-диспетчерской службой
    controlled airspace
    контролируемое воздушное пространство
    controlled flight
    контролируемый полет
    controlled route
    контролируемый маршрут
    controlled spin
    управляемый штопор
    control lever
    ручка управления
    controlling beam
    управляющий луч
    controlling fuel
    командное топливо
    control linkage
    проводка системы управления
    control lock
    стопор рулей
    control loss
    потеря управляемости
    control message
    диспетчерское указание
    control mode
    режим управления
    control of an investigation
    контроль за ходом расследования
    control panel
    пульт управления
    control pedestal
    пульт управления
    control position indicator
    указатель положения рулей
    control radar
    радиолокационная станция наведения
    control radio station
    радиостанция диспетчерской связи
    control rod
    тяга управления
    control rod pressure seal
    гермовывод тяги управления
    control signal
    управляющий сигнал
    control slot
    щель управления
    (пограничным слоем) control speed
    эволютивная скорость
    Минимально допустимая скорость при сохранении управляемости. controls response
    чувствительность органов управления
    control stick
    ручка управления
    (воздушным судном) control stick movement
    перемещение ручки управления
    control surface
    поверхность управления
    control surface angle
    угол отклонения руля
    control surface chord
    хорда руля
    control surface deflection
    отклонение поверхности управления
    control surface effectiveness
    эффективность рулей
    control surface load
    нагрузка на поверхность управления
    control surface pilot
    ось руля
    control surface reversal
    перекладка поверхности управления
    control system
    система управления
    control system load
    усилие на систему управления
    control the aircraft
    управлять воздушным судном
    control the pitch
    управлять шагом
    control transfer line
    рубеж передачи управления
    control unit
    командный прибор
    control valve
    клапан управления
    control wheel
    штурвал
    control wheel force
    усилие на штурвале
    control wheel grip
    рукоятка штурвала
    control wheel horn
    рог штурвала
    control wheel rim
    колесо штурвала управления
    control zone
    зона диспетчерского контроля
    crop control flight
    полет для контроля состояния посевов
    crop control operation
    полет для контроля состояния посевов с воздуха
    customs control
    таможенный досмотр
    cyclic pitch control
    управление циклическим шагом
    cyclic pitch control rod
    тяга управления циклическим шагом
    cyclic pitch control stick
    ручка продольно-поперечного управления циклическим шагом
    (несущего винта) cyclic pitch control system
    система управления циклическим шагом
    (несущего винта) data flow control
    управление потоком информации
    deceleration control unit
    дроссельный механизм
    deflect the control surface
    отклонять поверхность управления
    (напр. элерон) differential aileron control
    дифференциальное управление элеронами
    differential control
    дифференциальное управление
    digital engine control
    цифровой электронный регулятор режимов работы двигателя
    direct control
    непосредственный контроль
    directional control
    путевое управление
    directional control capability
    продольная управляемость при посадке
    directional control loss
    потеря путевой управляемости
    directional control pedal
    педаль путевого управления
    direct lift control system
    система управления подъемной силой
    director control
    директорное управление
    distance control
    дистанционное управление
    Document Control Unit
    Сектор контроля за документацией
    drift angle control
    управление углом сноса
    dual control
    спаренное управление
    easy-to-operate control
    легкое управление
    electric propeller pitch control
    электрическое управление шагом воздушного винта
    electronic engine control system
    электронная система управления двигателем
    elevator control
    управление рулем высоты
    elevator control stand
    колонка руля высоты
    emergency control
    аварийное управление
    engine control system
    система управления двигателем
    engine throttle control lever
    рычаг раздельного управления газом двигателя
    environmental control system equipment
    оборудование системы контроля окружающей среды
    environment control
    охрана окружающей среды
    environment control system
    система жизнеобеспечения
    (воздушного судна) environment control system noise
    шум от системы кондиционирования
    fail to maintain control
    не обеспечивать диспетчерское обслуживание
    fail to relinquish control
    своевременно не передать управление
    feedback control system
    система управления с обратной связью
    fire control operation
    противопожарное патрулирование с воздуха
    flight compartment controls
    органы управления в кабине экипажа
    flight control
    диспетчерское управление полетами
    flight control boost system
    бустерная система управления полетом
    flight control fundamentals
    руководство по управлению полетами
    flight control gust-lock system
    система стопорения поверхностей управления
    (при стоянке воздушного судна) flight control load
    нагрузка в полете от поверхности управления
    flight control system
    система управления полетом
    flight director system control panel
    пульт управления системой директорного управления
    flow control
    управление потоком
    flow control center
    диспетчерский центр управления потоком воздушного движения
    flow control procedure
    управление потоком
    foot controls
    ножное управление
    fore-aft control rod
    тяга провольного управления
    fuel control panel
    топливный щиток
    fuel control unit
    командно-топливный агрегат
    fuel injection control
    регулирование непосредственного впрыска топлива
    full-span control surface
    поверхность управления по всему размаху
    (напр. крыла) get out of control
    терять управление
    go out of control
    становиться неуправляемым
    ground control
    управление наземным движением
    ground controlled approach
    заход на посадку на посадку под контролем наземных средств
    ground control system
    наземная система управления
    (полетом) hand control
    ручное управление
    handle the flight controls
    оперировать органами управления полетом
    heading control loop
    рамочная антенна контроля курса
    health control
    медицинский контроль
    helicopter control system
    система управления вертолетом
    hydraulic control
    гидравлическое управление
    hydraulic control boost system
    гидравлическая бустерная система управления
    hydraulic propeller pitch control
    гидравлическое управление шагом воздушного винта
    immigration control
    иммиграционный контроль
    independent control
    автономное управление
    inertial control system
    инерциальная система управления
    integrated control system
    встроенная система контроля
    integrated system of airspace control
    комплексная система контроля воздушного пространства
    interphone control box
    абонентский аппарат переговорного устройства
    irreversible control
    необратимое управление
    jacking control unit
    пульт управления подъемниками
    jet deviation control system
    система управления отклонением реактивной струи
    laminar flow control
    управление ламинарным потоком
    landing control
    управление посадкой
    land use control
    контроль за использованием территории
    lateral control
    поперечное управление
    lateral control rod
    тяга поперечного управления
    lateral control spoiler
    интерцептор - элерон
    lateral control system
    система поперечного управления
    (воздушным судном) layout of controls
    расположение органов управления
    level control
    управление эшелонированием
    longitudinal control
    продольное управление
    longitudinal control rod
    тяга продольного управления
    longitudinal control system
    система продольного управления
    (воздушным судном) loss of control
    потеря управления
    loss the control
    терять управление
    low control area
    нижний диспетчерский район
    maintain control
    обеспечивать диспетчерское обслуживание
    manipulate the flight controls
    оперировать органами управления полетом
    manual control
    ручное управление
    master control
    центральный пульт управления
    mid air collision control
    предупреждение столкновений в воздухе
    mixture control
    высотный корректор
    mixture control assembly
    высотный корректор двигателя
    mixture control knob
    ручка управления высотным корректором
    mixture control lever
    рычаг высотного корректора
    noise control
    контроль уровня шума
    noise control technique
    метод контроля шума
    nonreversible control
    необратимое управление
    nozzle control system
    система управления реактивным соплом
    oceanic area control center
    океанический районный диспетчерский центр
    oceanic control area
    океанический диспетчерский район
    oil control ring
    маслосборное кольцо
    operating controls
    органы управления
    operational control
    диспетчерское управление полетами
    overspeed limiting control
    узел ограничения заброса оборотов
    passport control
    паспортный контроль
    pedal control
    ножное управление
    pilot on the controls
    пилот, управляющий воздушным судном
    pitch control
    продольное управление
    pitch control lever
    ручка шага
    pitch control system
    система управления тангажом
    pitch trim control knob
    кремальера тангажа
    positive control zone
    зона полного диспетчерского контроля
    power augmentation control
    управление форсажем
    power-boost control
    обратимое управление с помощью гидроусилителей
    power-boost control system
    бустерная обратимая система управления
    powered control
    управление с помощью гидроусилителей
    power-operated control
    необратимое управление с помощью гидроусилителей
    power-operated control system
    необратимая система управления
    pressure control system
    система регулирования давления
    pressure control unit
    автомат давления
    propeller control unit
    регулятор числа оборотов воздушного винта
    propeller pitch control
    управление шагом воздушного винта
    propeller pitch control system
    л управления шагом воздушного винта
    pull the control column back
    брать штурвал на себя
    pull the control stick back
    брать ручку управления на себя
    push-button control
    кнопочное управление
    push-pull control system
    жесткая система управления
    (при помощи тяг) push the control column
    отдавать штурвал от себя
    push the control stick
    отдавать ручку управления от себя
    quality control expert
    эксперт по контролю за качеством
    radar approach control
    центр радиолокационного управления заходом на посадку
    radar control
    радиолокационный контроль
    radar control area
    зона действия радиолокатора
    radar transfer of control
    передача радиолокационного диспетчерского управления
    radio control board
    пульт управления по радио
    radio remote control
    радиодистанционное управление
    regional control center
    региональный диспетчерский центр
    release of control
    передача управления
    relinquish control
    передавать управление
    remote control
    дистанционное управление
    remote control equipment
    оборудование дистанционного управления
    remote control system
    система дистанционного управления
    respond to controls
    реагировать на отклонение рулей
    reverser lock control valve
    клапан управления замком реверса
    reversible control
    обратимое управление
    reversible control system
    обратимая система управления
    rigid control
    жесткое управление
    roll control
    управление по крену
    roll control force sensor
    датчик усилий по крену
    roll control knob
    ручка управления креном
    rudder control
    управление рулем направления
    rudder control system
    система управления рулем направления
    rudder trim tab control system
    система управления триммером руля направления
    runway controlled
    диспетчер старта
    runway control van
    передвижной диспетчерский пункт в районе ВПП
    safety control measures
    меры по обеспечению безопасности
    speed control area
    зона выдерживания скорости
    speed control system
    система управления скоростью
    (полета) spring tab control rod
    тяга управление пружинным сервокомпенсатором
    stabilizer control jack
    механизм перестановки стабилизатора
    stack controlled
    диспетчер подхода
    starting fuel control unit
    автомат подачи пускового топлива
    steering-damping control valve
    распределительно демпфирующий механизм
    stiff control
    тугое управление
    surface movement control
    управление наземным движением
    surge control
    противопомпажный механизм
    tab control system
    система управления триммером
    tab control wheel
    штурвальчик управления триммером
    tail rotor control pedal
    педаль управления рулевым винтом
    take over the control
    брать управление на себя
    temperature control
    терморегулятор
    temperature control amplifier
    усилитель терморегулятора
    temporary loss of control
    временная потеря управляемости
    terminal control area
    узловой диспетчерский район
    terminal radar control
    конечный пункт радиолокационного контроля
    terminate the control
    прекращать диспетчерское обслуживание
    termination of control
    прекращение диспетчерского обслуживания
    throttle control
    управление газом
    throttle control knob
    сектор управления газом
    throttle control twist grip
    ручка коррекции газа
    tie bus control
    управление переключением шин
    track controlled
    диспетчер обзорного радиолокатора
    traffic control
    управление воздушным движением
    traffic control instructions
    правила управления воздушным движением
    traffic control personnel
    персонал диспетчерской службы воздушного движения
    traffic control regulations
    правила управления воздушным движением
    transfer of control
    передача диспетчерского управления
    transfer the control
    передавать диспетчерское управление другому пункту
    trim tab control
    управление триммером
    turn control knob
    ручка управления разворотом
    unassisted control
    управление без применения гидроусилителей
    unassisted control system
    безбустерная система управления
    upper area control center
    диспетчерский центр управления верхним районом
    upper control area
    верхний диспетчерский район
    upper level control area
    верхний район управления эшелонированием
    warning system control unit
    блок управления аварийной сигнализации
    weight and balance controlled
    диспетчер по загрузке и центровке
    wind flaps control system
    система управления закрылками
    windshield heat control unit
    автомат обогрева стекол
    wing flap control system
    система управления закрылками
    yaw control
    управление по углу рыскания

    English-Russian aviation dictionary > control

  • 12 по

    автомат загрузки по скоростному напору
    Q-feel system
    автомат имитации усилий по числу М
    Mach-feel system
    автоматическое сопровождение по дальности
    automatic range tracking
    автоматическое флюгирование по отрицательной тяге
    drag-actuated autofeathering
    автоматическое флюгирование по предельным оборотам
    overspeed-actuated autofeathering
    автомат стабилизации автопилота по числу М
    autopilot Mach lock
    автомат устойчивости по тангажу
    pitch autostabilizer
    агент по грузовым перевозкам
    cargo agent
    агент по оформлению
    handing agent
    агент по оформлению туристических перевозок
    travel agent
    агент по продаже билетов
    ticket medium
    агентство по отправке грузов воздушным транспортом
    air freight forwarder
    Агентство по пропорциональным тарифам
    Prorate Agency
    анализатор с интегрированием по времени
    time-integrating analyser
    Африканская конференция по авиационным тарифам
    African Air Tariff Conference
    аэропортовый комитет по разработке и утверждению расписания
    airport scheduling committee
    балансировать по тангажу
    trim in pitch
    балансировка по тангажу
    longitudinal trim
    билет по основному тарифу
    normal fare ticket
    блок контроля скорости пробега по земле
    ground run monitor
    весовая отдача по полезной нагрузке
    useful-to-takeoff load ratio
    взлетать по ветру
    takeoff downwind
    взлет по вертолетному
    no-run takeoff
    взлет по ветру
    downwind takeoff
    взлет по приборам
    instrument takeoff
    взлет по самолетному
    1. forward takeoff
    2. running takeoff визуальная посадка по наземным ориентирам
    visually judged landing
    визуальный заход на посадку по упрощенной схеме
    abbreviated visual approach
    визуальный полет по кругу
    visual circling
    воздушная перевозка по найму
    air operation for hire
    воздушное судно, загруженное не по установленной схеме
    improperly loaded aircraft
    воздушное судно, не сертифицированное по шуму
    nonnoise certificate aircraft
    воздушное судно по обмену
    interchanged aircraft
    восстановление по крену
    bank erection
    восстановление по тангажу
    pitch erection
    ВПП, не оборудованная для посадки по приборам
    noninstrument runway
    ВПП, оборудованная для посадки по приборам
    instrument runway
    вращаться по инерции
    run down
    вращение по инерции
    rundown
    время вылета по расписанию
    scheduled departure time
    время наземной тренировки по приборам
    instrument ground time
    время налета по приборам
    instrument flying time
    время налета по приборам на тренажере
    instrument flying simulated time
    время полета по внешнему контуру
    outbound time
    время полета по маршруту
    trip time
    время по расписанию
    due time
    выдерживание курса по курсовому радиомаяку
    localizer hold
    выдерживать курс по компасу
    hold the heading on the compass
    выдерживать направление по лучу
    follow the beam
    выполнять доработку по бюллетеню
    perform the service bulletin
    выполнять полет по курсу
    fly the heading
    высота по давлению
    pressure altitude
    высота полета по маршруту
    en-route altitude
    высота по радиовысотомеру
    radio height
    Генеральная конференция по мерам и весам
    General Conference of Weights and Measure
    генеральный агент по продаже
    general sales agent
    годность по состоянию здоровья
    medical fitness
    годность по уровню шума
    noiseworthiness
    градус по шкале Цельсия
    degree Celsius
    группа, выполняющая полет по туру
    tour group
    дальность видимости по наклонной прямой
    oblique visibility
    дальность видимости по прямой
    1. line-of-sight distance
    2. line-of-sight range дальность полета по замкнутому маршруту
    closed-circuit range
    дальность полета по прямой
    direct range
    датчик рассогласования по крену
    roll synchro transmitter
    датчик усилий по крену
    roll control force sensor
    движение по земле
    ground run
    движение по тангажу
    pitching motion
    дежурный по посадке
    boarding clerk
    действия по аэродрому при объявлении тревоги
    aerodrome alert measures
    действия по обнаружению и уходу
    see and avoid operations
    действующий технологический стандарт по шуму
    current noise technology standard
    деятельность по координации тарифов
    tariff coordinating activity
    диспетчер по загрузке
    load controller
    диспетчер по загрузке и центровке
    weight and balance controlled
    диспетчер по планированию
    planner
    диспетчер по планированию полетов
    flight planner
    длина разбега по воде
    water run length
    дозаправлять топливом на промежуточной посадке по маршруту
    refuel en-route
    доставка грузов по воздуху
    aerial cargo delivery
    доставлять по воздуху
    fly in
    доступ, регламентированный по времени
    time-ordered access
    доход по контракту
    contract revenue
    Европейская конференция по вопросам гражданской авиации
    European Civil Aviation Conference
    загрузочный механизм по скоростному напору
    Q-feel mechanism
    загрузочный механизм по числу М
    Mach-feel mechanism
    закрылок по всему размаху
    full-span flap
    занимать эшелон по нулям
    be on the level on the hour
    запас по оборотам несущего винта
    rotor speed margin
    запас по помпажу
    surging margin
    запас по сваливанию
    stall margin
    запас по ускорению
    acceleration margin
    заход на посадку, нормированный по времени
    timed approach
    заход на посадку по командам наземных станций
    advisory approach
    заход на посадку по коробочке
    rectangular traffic pattern approach
    заход на посадку по криволинейной траектории
    curved approach
    заход на посадку по кругу
    circling approach
    заход на посадку по крутой траектории
    steep approach
    заход на посадку по курсовому маяку
    localizer approach
    заход на посадку по маяку
    beam approach
    заход на посадку по обзорному радиолокатору
    surveillance radar approach
    заход на посадку по обычной схеме
    normal approach
    заход на посадку по осевой линии
    center line approach
    заход на посадку по полной схеме
    long approach
    заход на посадку по пологой траектории
    flat approach
    заход на посадку по приборам
    1. instrument approach landing
    2. instrument landing approach заход на посадку по прямому курсу
    front course approach
    заход на посадку по радиолокатору
    radar approach
    заход на посадку по сегментно-криволинейной схеме
    segmented approach
    заход на посадку после полета по кругу
    circle-to-land
    заход на посадку по укороченной схеме
    short approach
    заход на посадку по упрощенной схеме
    simple approach
    заход на посадку с прямой по приборам
    straight-in ILS-type approach
    звездное время по гринвичскому меридиану
    Greenwich sideral time
    зона захода на посадку по кругу
    circling approach area
    зона обзора по азимуту
    azimuth coverage
    изменение маршрута по желанию пассажира
    voluntary rerouting
    имитируемый полет по приборам
    simulated instrument flight
    инженер по навигационным средствам
    navaids engineer
    инженер по радиоэлектронному оборудованию
    radio engineer
    инженер по техническому обслуживанию воздушных судов
    aircraft maintenance engineer
    инженер по электронному оборудованию
    electronics engineer
    инспектор по летной годности
    airworthiness inspector
    инспектор по производству полетов
    operations inspector
    инспекция по расследованию авиационных происшествий
    investigating authority
    инструктаж по условиям полета по маршруту
    route briefing
    инструктор по навигационным средствам
    navaids instructor
    инструктор по производству полетов
    flight operations instructor
    инструкция по загрузке воздушного судна
    aircraft loading instruction
    инструкция по консервации и хранению воздушного судна
    aircraft storage instruction
    инструкция по обеспечению безопасности полетов
    air safety rules
    инструкция по производству полетов
    operation instruction
    инструкция по техническому обслуживанию
    maintenance instruction
    инструкция по эксплуатации воздушного судна
    aircraft operating instruction
    информация по воздушной трассе
    airway information
    информация по условиям посадки
    landing instruction
    испытание по уходу на второй круг
    go-around test
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    испытания по полной программе
    full-scale tests
    Исследовательская группа по безопасности полетов
    Aviation Security Study Group
    истинное время по Гринвичу
    Greenwich apparent time
    исходные условия сертификации по шуму
    noise certification reference conditions
    калибровка чувствительности по звуковому давлению
    sound pressure sensitivity calibration
    категория ИКАО по обеспечению полета
    facility performance ICAO category
    классификация воздушных судов по типам
    aircraft category rating
    кодирование по опорному времени
    time reference coding
    Комиссия по авиационной метеорологии
    Commission for aeronautical Meteorology
    Комиссия по нарушению тарифов
    Breachers Commission
    Комиссия по основным системам
    Commission for basic Systems
    Комитет по авиационному шуму
    Committee on Aircraft Noise
    Комитет по безопасности полетов
    Safety Investigation Board
    Комитет по воздушным перевозкам
    1. Air Transport Committee
    2. Air Transportation Board Комитет по исследованиям звуковых ударов
    Sonic Boom Committee
    Комитет по координации частот
    Frequency Coordinating Body
    Комитет по незаконному вмешательству
    Committee on Unlawful Interference
    Комитет по охране окружающей среды от воздействия авиации
    Committee on Aviation Environmental Protection
    Комитет по поощрительным тарифам
    Creative Fares Board
    Комитет по рассмотрению авиационных вопросов
    Aviation Review Committee
    Комитет по расходам
    Cost Committee
    Комитет по специальным грузовым тарифам
    Specific Commodity Rates Board
    коммерческая загрузка, ограниченная по массе
    weight limited payload
    коммерческая загрузка, ограниченная по объему
    space limited payload
    компрессор по помпажу
    compressor surge margin
    конвенция по вопросам деятельности международной гражданской авиации
    convention on international civil aviation
    конвенция по управлению воздушным движением
    air traffic convention
    консультант по вопросам обучения
    training consultant
    консультант по тренажерам
    trainers consultant
    Консультативная группа по метеообеспечению
    Meteorological Advisory Group
    консультативное сообщение по устранению конфликтной ситуации
    resolution advisory
    Консультативный комитет по управлению воздушным движением
    Air Traffic Control Advisory Committee
    Консультативный комитет по упрощению формальностей
    Facilitation Advisory Committee
    контролируемое воздушное пространство предназначенное для полетов по приборам
    instrument restricted airspace
    контроль состояния посевов по пути выполнения основного задания
    associated crop control operation
    Конференция агентства по грузовым перевозкам
    Cargo Agency Conference
    Конференция агентств по пассажирским перевозкам
    Passenger Agency Conference
    Конференция по валютным вопросам
    Currency Conference
    Конференция по вопросам обслуживания пассажиров
    Passenger Services Conference
    Конференция по координации тарифов
    Tariff Co-ordinating Conference
    координационный центр по спасанию
    rescue coordination center
    коррекция траектории по полученной информации
    reply-to-track correlation
    кресло, расположенное по направлению полета
    forward facing seat
    курс захода на посадку по приборам
    instrument approach course
    курс подготовки по утвержденной программе
    approved training course
    курс по локсодромии
    rhumb-line course
    курс по маяку
    beacon course
    курс по радиомаяку
    localizer course
    курсы подготовки пилотов к полетам по приборам
    instrument pilot school
    летать по ветру
    fly downwind
    летать по глиссадному лучу
    fly the glide-slope beam
    летать по кругу
    1. circularize
    2. fly round 3. fly the circle летать по кругу над аэродромом
    circle the aerodrome
    летать по курсу
    1. fly on the heading
    2. fly on the course летать по локсодромии
    fly the rhumb line
    летать по маршруту
    fly en-route
    летать по ортодромии
    fly the great circle
    летать по приборам
    1. fly on instruments
    2. fly by instruments летать по приборам в процессе тренировок
    fly under screen
    летать по прямой
    fly straight
    лететь по лучу
    fly the beam
    летная полоса, оборудованная для полетов по приборам
    instrument strip
    линия полета по курсу
    on-course line
    линия пути по локсодромии
    rhumb-line track
    линия пути по схеме с двумя спаренными разворотами
    race track
    Международная комиссия по аэронавигации
    International commission for Air Navigation
    Международная комиссия по освещению
    Commission on Illumination
    международное сотрудничество по вопросам летной годности
    international collaboration in airworthiness
    меры по обеспечению безопасности
    safety control measures
    меры по предупреждению пожара
    fire precautions
    меры по снижению шума
    noise abatement measures
    метеоданные по аэродрому
    aerodrome forecast material
    метеосводка по трассе полета
    airway climatic data
    методика сертификации по шуму
    noise certification procedure
    метод продажи по наличию свободных мест
    space available policy
    механизм триммерного эффекта по тангажу
    pitch trim actuator
    механизм усилий по скоростному напору
    Q-feel unit
    минимальная высота полета по кругу
    minimum circling procedure height
    минимальная высота по маршруту
    minimum en-route altitude
    минимум для полетов по кругу
    circling minima
    набирать высоту при полете по курсу
    climb on the course
    набор высоты по крутой траектории
    steep climb
    набор высоты по установившейся схеме
    proper climb
    наведение по азимуту
    azimuth guidance
    наведение по азимуту при заходе на посадку
    approach azimuth guidance
    наведение по глиссаде
    glide-slope guidance
    наведение по глиссаде при заходе на посадку
    approach slope guidance
    наведение по клиренсу
    clearance guidance
    наведение по лучу
    1. beam homing
    2. beam follow guidance 3. beam riding наведение по лучу радиолокационной станции
    radar beam riding
    наведение по отраженному лучу
    back beam track guidance
    наведение по углу
    angle guidance
    навигация по визуальным ориентирам
    contact navigation
    навигация по заданным путевым углам
    angle navigation
    навигация по линии равных азимутов
    constant-bearing navigation
    навигация по наземным ориентирам
    1. landmark navigation
    2. terrestrial navigation 3. ground reference navigation навигация по ортодромии
    waypoint navigation
    навигация по условным координатам
    grid navigation
    наставление по управлению воздушным движением
    air traffic guide
    не по курсу
    off-course
    неустойчивость по крену
    roll instability
    неустойчивость по тангажу
    pitch instability
    облако, напоминающее по виду наковальню
    anvil cloud
    обобщенные характеристики по шуму
    generalized noise characteristics
    оборудование для полетов по приборам
    blind flight equipment
    обслуживание по смешанному классу
    mixed service
    обслуживание по туристическому классу
    1. economy class service
    2. coach service 3. no frills service обтекать по потоку
    streamwise
    обтекать хорду по потоку
    stream-wise chord
    Объединенная конференция по грузовым тарифам
    Composite cargo Traffic Conference
    Объединенная конференция по координации грузовым перевозкам
    Composite cargo Tariff Coordinating Conference
    Объединенная конференция по координации пассажирских тарифов
    Composite Passenger Tariff Co-ordinating Conference
    Объединенная конференция по пассажирским перевозкам
    Composite Passenger Conference
    огни по требованию
    lights on request
    ограничение по боковому ветру
    cross-wind limit
    ограничение по времени
    time limit
    ограничение по массе
    weight limitation
    ограничение по скорости полета
    air-speed limitation
    ограничения по загрузке
    loading restrictions
    ограничения по летной годности
    airworthiness limitations
    ограничивать по состоянию здоровья
    decrease in medical fitness
    операции по подготовке рейса к вылету
    departure operations
    операции по спасению
    rescue operations
    операция по рассеиванию тумана
    fog dispersal operation
    операция по спасению
    rescue mission
    опережение по фазе
    phase advance
    определение местонахождения воздушного судна по звездам
    astrofix
    определение местоположения по наземным ориентирам
    visual ground fixing
    определение местоположения по пеленгу одной станции
    one-station fixing
    определение местоположения по пройденному пути и курсу
    range-bearing fixing
    ориентировка ВПП по магнитному меридиану
    magnetic orientation of runway
    ориентировка по радиомаяку
    radio-range orientation
    остановка по расписанию
    sheduled stopping
    Отдел по соблюдению тарифов
    Compliance Department
    отклонение по дальности
    range deviation
    отклонение по крену
    bank displacement
    отставание по времени
    time lag
    отставание по фазе
    phase lag
    ошибка по дальности
    range error
    параметр потока, критический по шуму
    noise-critical flow parameter
    пассажир по полному тарифу
    adult
    пеленг по гироприбору
    gyro bearing
    перевозка грузов по воздуху
    air freight lift
    перевозка пассажиров по контракту
    contract tour
    перевозка по специальному тарифу
    unit toll transportation
    перевозки по тарифу туристического класса
    coach traffic
    персонал по обеспечению полетов
    flight operations personnel
    персонал по оформлению билетов
    ticketing personnel
    пикирование по спирали
    spiral dive
    пилотировать по приборам
    pilot by reference to instruments
    планирование воздушного судна по спирали
    aircraft spiral glide
    план полета по приборам
    instrument flight plan
    по азимуту
    in azimuth
    поверхность управления по всему размаху
    full-span control surface
    (напр. крыла) по ветру
    downwind
    по всему размаху
    tip
    погода по метеосводке
    reported weather
    погрешность отсчета по углу места
    elevation error
    подводить по трубопроводу
    deliver by pipe
    подготовка для полетов по приборам
    instrument flight training
    подготовка по утвержденной программе
    approved training
    по запросу
    1. on-request
    2. on request полет по дополнительному маршруту
    extra section flight
    полет по заданной траектории
    desired path flight
    полет по заданному маршруту
    desired track flight
    полет по замкнутому кругу
    closed-circuit flight
    полет по замкнутому маршруту
    round-trip
    полет по индикации на стекле
    head-up flight
    полет по инерции
    1. coasting flight
    2. coast полет по коробочке
    box-pattern flight
    полет по круговому маршруту
    1. round-trip flight
    2. circling полет по кругу
    circuit-circling
    полет по кругу в районе аэродрома
    aerodrome traffic circuit operation
    полет по кругу над аэродромом
    1. aerodrome circling
    2. aerodrome circuit-circling полет по курсу
    flight on heading
    полет по локсодромии
    rhumb-line flight
    полет по маршруту
    1. en-route operation
    2. en-route flight полет по маякам ВОР
    VOR course flight
    полет по наземным ориентирам
    visual navigation flight
    полет по наземным ориентирам или по командам наземных станций
    reference flight
    полет по полному маршруту
    entire flight
    полет по приборам
    1. instrument flight rules operation
    2. instrument flight 3. blind flight 4. head-down flight полет по приборам, обязательный для данной зоны
    compulsory IFR flight
    полет по размеченному маршруту
    point-to-point flight
    полет по расписанию
    1. scheduled flight
    2. regular flight полет по сигналам с земли
    directed reference flight
    полет по условным меридианам
    grid flight
    полет по установленным правилам
    flight under the rules
    полеты по воздушным трассам
    airways flying
    полеты по изобаре
    pressure flying
    полеты по контрольным точкам
    fix-to-fix flying
    полеты по кругу
    circuit flying
    полеты по наземным естественным ориентирам
    terrain fly
    полеты по низким метеоминимумам
    low weather operations
    полеты по обратному лучу
    back beam flying
    полеты по ортодромии
    great-circle flying
    полеты по прямому лучу
    front beam flying
    полеты по радиолучу
    radio-beam fly
    положение, определенное по радиолокатору
    radar track position
    положение по направлению трассы
    along-track position
    положение по тангажу
    pitch attitude
    по оси воздушного судна
    on aircraft center line
    по полету
    looking forward
    по размаху
    spanwise
    порядок действий по тревоге на аэродроме
    aerodrome alerting procedure
    посадка по вертолетному типу
    helicopter-type landing
    посадка по ветру
    downwind landing
    посадка по командам с земли
    1. ground-controlled landing
    2. talk-down landing посадка по приборам
    1. instrument landing
    2. blind landing посадка по техническим причинам
    technical stop
    Постоянный комитет по летно-техническим характеристикам
    Standing Committee of Performance
    по часовой стрелке
    clockwise
    правила полета по кругу
    circuit rules
    правила полетов по приборам
    instrument flight rules
    превышение по высоте
    gain in altitude
    предварительные меры по обеспечению безопасности полетов
    advance arrangements
    предкрылок по всему размаху
    full-span slat
    (крыла) предоставляется по запросу
    available on request
    предполетный инструктаж по метеообстановке
    flight weather briefing
    предпочтительная по уровню шума ВПП
    noise preferential runway
    предпочтительный по уровню шума маршрут
    noise preferential route
    предупреждение по аэродрому
    aerodrome warning
    преобразователь сигнала по тангажу
    pitch transformer
    пробегать по полному маршруту
    cover the route
    проведение работ по снижению высоты препятствий для полетов
    obstacle clearing
    проверка прилегания по краске
    transferred marking
    прогноз по авиатрассе
    airway forecast
    прогноз по аэродрому
    aerodrome forecast
    прогноз по высоте
    height forecast
    прогноз по маршруту
    air route forecast
    прогноз по региону
    regional forecast
    программа сертификации по шуму
    noise certification scheme
    продажа билетов по принципу наличия свободных мест
    space available basis
    продолжительность по запасу топлива
    fuel endurance
    прокладка маршрута по угловым координатам
    angle tracking
    пропускная способность по числу посадок
    landing capacity
    противопожарное патрулирование по пути выполнения основного задания
    associated fire control operation
    пульт управления по радио
    radio control board
    работы по техническому обслуживанию
    maintenance operations
    Рабочая группа по разработке основных эксплуатационных требований
    Basic Operational Requirements Group
    развертка по дальности
    range scanning
    разворачивать по ветру
    turn downwind
    разворот по приборам
    instrument turn
    разворот по стандартной схеме
    standard rate turn
    разворот по установленной схеме
    procedure turn
    разница в тарифах по классам
    class differential
    разрешающая способность по дальности
    range resolution
    разрешение в процессе полета по маршруту
    en-route clearance
    разрешение на полет по приборам
    instrument clearance
    распределение давления по крылу
    wing pressure plotting
    распределение по размаху крыла
    spanwise distribution
    распределение по хорде
    chordwise distribution
    распределение расходов по маршрутам
    cost allocation to routes
    расстояние по ортодромии
    great-circle distance
    реакция по крену
    roll response
    регламентирование по времени
    timing
    регулировать по высоте
    adjust for height
    режим работы автопилота по заданному курсу
    autopilot heading mode
    рейс с обслуживанием по первому классу
    first-class flight
    рекомендации по обеспечению безопасности полетов
    safety recommendations
    рекомендации по стандартам, практике и правилам
    recommendations for standards, practices and procedures
    руководство по обеспечению безопасности
    safety regulations
    руководство по полетам воздушных судов гражданской авиации
    civil air regulations
    руководство по предупреждению столкновений над морем
    regulations for preventing collisions over sea
    руководство по производству полетов в зоне аэродрома
    aerodrome rules
    руководство по технической эксплуатации воздушного судна
    aircraft maintenance guide
    руководство по управлению полетами
    flight control fundamentals
    руководство по упрощению формальностей
    guide to facilitation
    руление по аэродрому
    ground taxi operation
    руление по воздуху
    air taxiing
    руление по воздуху к месту взлета
    aerial taxiing to takeoff
    рыскание по курсу
    hunting
    сбор за услуги по оценке
    valuation charge
    сводка по аэродрому
    aerodrome report
    сводка погоды по данным радиолокационного наблюдения
    radar weather report
    связь по запросу с борта
    air-initiated communication
    связь по обеспечению регулярности полетов
    flight regularity communication
    сдвиг по фазе
    phase shift
    сектор наведения по клиренсу
    clearance guidance sector
    Секция расчетов по вопросам технической помощи
    Technical Assistance Accounts section
    (ИКАО) Секция расчетов по регулярной программе
    Regular Programme Accounts section
    (ИКАО) сертификат воздушного судна по шуму
    aircraft noise certificate
    сертификационный стандарт по шуму
    noise certification standard
    сертификация по шуму на взлетном режиме
    take-off noise
    сигнал полета по курсу
    on-course signal
    сигнал синхронизации по времени
    synchronized time signal
    система балансировки по числу М
    Mach trim system
    система блокировки управления по положению реверса
    thrust reverser interlock system
    система наведения по лучу
    1. beam-rider system
    2. guide beam system система наведения по приборам
    instrument guidance system
    система наведения по сканирующему лучу
    scanning beam guidance system
    система наведения по углу
    angle guidance system
    система навигации по наземным ориентирам
    ground-referenced navigation system
    система посадки по лучу маяка
    beam approach beacon system
    система посадки по приборам
    instrument landing system
    система сборов по фактической массе
    weight system
    (багажа или груза) скольжение по воде
    equaplaning
    скорость набора высоты при полете по маршруту
    en-route climb speed
    скорость по тангажу
    rate of pitch
    следовать по заданному курсу
    pursue
    служба обеспечения прогнозами по маршруту
    route forecast service
    служба по изучению рынка
    marketing service
    (воздушных перевозок) снижение по спирали
    spiral descent
    снос определенный по радиолокатору
    radar drift
    советник по авиационным вопросам
    aviation adviser
    советник по вопросам гражданской авиации
    civil aviation adviser
    советник по проектированию и строительству аэродромов
    aerodrome engineering instructor
    Совет по авиационным спутникам
    Aeronautical Satellite Council
    Совместный комитет по специальным грузовым тарифам
    Joint service Commodity Rates Board
    соглашение по вопросам летной годности
    arrangement for airworthiness
    соглашение по пассажирским и грузовым тарифам
    fares and rates agreement
    соглашение по прямому транзиту
    direct transit agreement
    соглашение по тарифам
    tariff agreement
    состояние готовности аэродрома по тревоге
    aerodrome alert status
    (состояние готовности служб аэродрома по тревоге) специализированный отдел по расследованию происшествий
    accident investigation division
    специалист по ремонту
    repairman
    специалист по ремонту воздушных судов
    aircraft repairman
    специалист по сборке
    rigger
    справочник по аэродромам
    aerodrome directory
    справочник по аэропортам
    airport directory
    средства обеспечения полетов по приборам
    nonvisual aids
    стандартная система управления заходом на посадку по лучу
    standard beam approach system
    стандартная схема вылета по приборам
    standard instrument departure
    стандартная схема посадки по приборам
    standard instrument arrival
    стандарт по шуму для дозвуковых самолетов
    subsonic noise standard
    степень помех по отношению к несущей частоте
    carrier-to-noise ratio
    строить по лицензии
    construct under license
    схема визуального полета по кругу
    visual circling procedure
    схема захода на посадку по командам с земли
    ground-controlled approach procedure
    схема захода на посадку по коробочке
    rectangular approach traffic pattern
    схема захода на посадку по приборам
    1. instrument approach chart
    2. instrument approach procedure схема полета по кругу
    1. circuit pattern
    2. circling procedure схема полета по маршруту
    en-route procedure
    схема полета по приборам
    instrument flight procedure
    схема полета по приборам в зоне ожидания
    instrument holding procedure
    схема полетов по кругу
    traffic circuit
    схема руления по аэродрому
    aerodrome taxi circuit
    тарировка по времени
    time calibration
    тарировка по дальности
    range calibration
    тарировка по числу М
    Mach number calibration
    тариф на полет по замкнутому кругу
    round trip fare
    тариф по контракту
    contract rate
    тариф по незамкнутому круговому маршруту
    open-jaw fare
    температура по шкале Цельсия
    Celsius temperature
    точность ориентировки по точечному ориентиру
    pinpoint accuracy
    траектория взлета, сертифицированная по шуму
    noise certification takeoff flight path
    траектория захода на посадку по азимуту
    azimuth approach path
    траектория захода на посадку по лучу курсового маяка
    localizer approach track
    траектория захода на посадку, сертифицированная по шуму
    noise certification approach path
    траектория полета по маршруту
    en-route flight path
    траектория полетов по низким минимумам погоды
    low weather minima path
    транспортировка по воздуху
    shipment by air
    трансформатор сигнала по крену
    roll transformer
    трансформатор сигнала по курсу
    yaw transformer
    трафарет с инструкцией по применению
    instruction plate
    требования по метеоусловиям
    meteorological requirements
    требования по ограничению высоты препятствий
    obstacle limitation requirements
    требования по снижению шума
    noise reduction requirements
    тренажер для подготовки к полетам по приборам
    instrument flight trainer
    тяга, регулируемая по величине и направлению
    vectored thrust
    угол рассогласования по крену
    bank synchro error angle
    удостоверение на право полета по авиалинии
    airline certificate
    удостоверение на право полета по приборам
    instrument certificate
    указания по выполнению руления
    taxi instruction
    указания по порядку ожидания
    holding instruction
    указания по управлению воздушным движением
    air-traffic control instruction
    указания по условиям эксплуатации в полете
    inflight operational instructions
    указатель отклонения от курса по радиомаяку
    localizer deviation pointer
    уполномоченный по расследованию
    investigator-in-charge
    управление по крену
    1. roll guidance
    2. roll control управление по угловому отклонению
    angular position control
    управление по углу рыскания
    yaw control
    управляемый по радио
    radio-controlled
    условия по заданному маршруту
    conditions on the route
    условия, по сложности превосходящие квалификацию пилота
    conditions beyond the experience
    условия сертификационных испытаний по шуму
    noise certification test conditions
    устанавливать воздушное судно по оси
    align the aircraft with the center line
    устанавливать воздушное судно по оси ВПП
    align the aircraft with the runway
    установленная схема вылета по приборам
    standard instrument departure chart
    установленная схема полета по кругу
    fixed circuit
    установленная схема ухода на второй круг по приборам
    instrument missed procedure
    устойчивость по крену
    1. rolling stability
    2. lateral stability устойчивость по скорости
    speed stability
    устойчивость по тангажу
    1. pitching stability
    2. pitch stability устойчивость по углу атаки
    angle-of-attack stability
    уточнение плана полета по сведениям, полученным в полете
    inflight operational planning
    уходить на второй круг по заданной схеме
    take a missed-approach procedure
    уход платформы по курсу
    platform drift in azimuth
    фирма по производству воздушных судов
    aircraft company
    флюгирование по отрицательному крутящему моменту
    negative torque feathering
    характеристика набора высоты при полете по маршруту
    en-route climb performance
    характеристика по наддуву
    manifold pressure characteristic
    характеристики наведения по линии пути
    track-defining characteristics
    характеристики по шуму
    noise characteristics
    чартерный рейс по заказу отдельной организации
    single-entity charter
    чартерный рейс по незамкнутому маршруту
    open-jaw charter
    чартерный рейс по объявленной программе
    programmed charter
    чартерный рейс по установленному маршруту
    on-route charter
    чувствительность к отклонению по сигналам курсового маяка
    lokalizer displacement sensitivity
    чувствительность по давлению
    pressure sensitivity
    чувствительность по курсу
    course sensitivity
    шкала корректировки по тангажу
    pitch trim scale
    шкала отклонения от курса по радиомаяку
    localizer deviation scale
    школа подготовки специалистов по управлению воздушным движением
    air traffic school
    экзамен по летной подготовке
    flight examination
    экспедитор по отправке грузов
    freight consolidator
    эксперт по вопросам ведения документации
    procedures document expert
    эксперт по контролю за качеством
    quality control expert
    эксперт по летной годности
    airworthiness expert
    эксперт по обслуживанию воздушного движения
    air traffic services expert
    эксперт по обучению пилотов
    pilot training expert
    эксперт по производству налетов
    flight operations expert
    эксперт по радиолокаторам
    radar expert
    эксперт по техническому обслуживанию
    maintenance expert
    этап полета по маршруту
    en-route flight phase
    эшелонирование по курсу
    track separation
    эшелонирование по усмотрению пилота
    own separation
    эшелонировать по высоте
    stack up

    Русско-английский авиационный словарь > по

  • 13 feed source

    1. основной источник питания
    2. источник электропитания радиоэлектронной аппаратуры
    3. источник питания (в электроснабжении)

     

    источник питания
    источник питания электроэнергией
    -
    [Интент]

    источник электропитания

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Характеристики внешних источников питания следует принимать по техническим условиям на присоединение, выдаваемым энегоснабжающей организацией в соответствии с Правилами пользования электрической энергией...
    Основными источниками питания должны служить электростанции и сети районных энергосистем. Исключение представляют большие предприятия с большим теплопотреблением, где основным источником питания может быть собственная электростанция (ТЭЦ). Но и в этом случае обязательно должна предусматриваться связь системы электроснабжения предприятия с сетью энергосистемы.

    [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]

    1.1.2 Зануление следует выполнять электрическим соединением металлических частей электроустановок с заземленной точкой источника питания электроэнергией при помощи нулевого защитного проводника.
    [ ГОСТ 12.1.030-81]

    Параллельные тексты EN-RU

    It is recommended that, where practicable, the electrical equipment of a machine is connected to a single incoming supply. Where another supply is necessary for certain parts of the equipment (for example, electronic equipment that operates at a different voltage), that supply should be derived, as far as is practicable, from devices (for example, transformers, converters) forming part of the electrical equipment of the machine.
    [IEC 60204-1-2006]

    Рекомендуется, там где это возможно, чтобы электрооборудование машины получало электропитание от одного источника. Если для каких-либо частей электрооборудования машины (например для электронного оборудования, работающего на другом напряжении) необходим отдельный источник питания, то, насколько это возможно, он должен являться частью (такой, например, как трансформатор, конвертор) электрооборудования этой же машины.
    [Перевод Интент]


     

    Power supplies
    The required power supplies can be determined based on the criteria for definition of the installation (receivers, power, location, etc.) and the operating conditions (safety, evacuation of the public, continuity, etc.).
    They are as follows:
    - Main power supply
    - Replacement power supply
    - Power supply for safety services
    - Auxiliary power supply

    [Legrand]

    Источники электропитания
    Источники электропитания определяют по различным критериям, в соответствии с характеристиками конкретной электроустановки. Определяют типы электроприемников, их мощность, территориальное расположение и др. При этом учитывают условия эксплуатации (безопасность, требования к аварийной эвакуации людей, непрерывность технологического процесса и т. д.).
    Применяют следующие источники:
    - основной источник питания;
    - резервный источник питания;
    - аварийный источник питания систем безопасности;
    - дополнительный источник питания.

    [Перевод Интент]

    0374_1
    Рис. Legrand
    Типовая схема электроснабжения: 1 - Main power supply - Основной источник питания
    2 - Replacement power supply (2nd source) - Резервный источник питания (2-й источник)
    3 - Replacement power supply (backup) - Резервный источник питания (независимый)
    4 - Auxiliary power supply - Дополнительный источник питания
    5 - Power supply for safety services - Аварийный источник питания для систем безопасности
    6 - Management of sources - Управление источниками питания
    7 - Control - Цепь управления
    8 - Main LV distrib. board - Главный распределительный щит (ГРЩ)
    9 - Safety panel - Панель безопасности
    10 - Uninterruptible power supply - Источник бесперебойного питания
    11 - Load shedding - Отключение нагрузки
    12 - Non-priority circuits -
    Цепи неприоритетной нагрузки
    14 - Uninterruptible circuits - Цепи бесперебойного питания
    15 - Shed circuits - Цепи отключаемой нагрузки
    16 - Safety circuits - Цепи систем безопасности

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

     

    источник электропитания радиоэлектронной аппаратуры
    источник электропитания РЭА

    Нерекомендуемый термин - источник питания
    Устройство силовой электроники, входящее в состав радиоэлектронной аппаратуры и преобразующее входную электроэнергию для согласования ее параметров с входными параметрами составных частей радиоэлектронной аппаратуры.
    [< size="2"> ГОСТ Р 52907-2008]

    источник питания
    Часть устройства, обеспечивающая электропитание остальных модулей устройства. 
    [ http://www.lexikon.ru/dict/net/index.html]

    EN

    power supply
    An electronic module that converts power from some power source to a form which is needed by the equipment to which power is being supplied.
    [Comprehensive dictionary of electrical engineering / editor-in-chief Phillip A. Laplante.-- 2nd ed.]

    0494
    Рис. ABB
    Структурная схема источника электропитания

    The input side and the output side are electrically isolated against each other

    Вход и выход гальванически развязаны

    Терминология относящая к входу

    Primary side

    Первичная сторона

    Input voltage

    Входное напряжение

    Primary grounding

     

    Current consumption

    Потребляемый ток

    Inrush current

    Пусковой ток

    Input fuse

    Предохранитель входной цепи

    Frequency

    Частота

    Power failure buffering

     

    Power factor correction (PFC)

    Коррекция коэффициента мощности

    Терминология относящая к выходу

    Secondary side

    Вторичная сторона

    Output voltage

    Выходное напряжение

    Secondary grounding

     

    Short-circuit current

    То короткого замыкания

    Residual ripple

     

    Output characteristics

    Выходные характеристики

    Output current

    Выходной ток

    Различают первичные и вторичные источники питания.
    К первичным относят преобразователи различных видов энергии в электрическую, например:
    - аккумулятор (преобразует химическую энергию.
    Вторичные источники не генерируют электроэнергию, а служат лишь для её преобразования с целью обеспечения требуемых параметров (напряжения, тока, пульсаций напряжения и т. п.)

    Задачи вторичного источника питания

    • Обеспечение передачи мощности — источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
    • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
    • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.
    • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и т. д. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например для зарядки аккумуляторов) необходима стабилизация тока.
    • Защита — напряжение или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
    • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
    • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
    • Управление — может включать регулировку, включение/отключение каких-либо цепей или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
    • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

    Трансформаторный (сетевой) источник питания

    Чаще всего состоит из следующих частей:

    • Сетевого трансформатора, преобразующего величину напряжения, а также осуществляющего гальваническую развязку;
    • Выпрямителя, преобразующего переменное напряжение в пульсирующее;
    • Фильтра для снижения уровня пульсаций;
    • Стабилизатора напряжения для приведения выходного напряжения в соответствие с номиналом, также выполняющего функцию сглаживания пульсаций за счёт их «срезания».

    В сетевых источниках питания применяются чаще всего линейные стабилизаторы напряжения, а в некоторых случаях и вовсе отказываются от стабилизации. 
    Достоинства такой схемы:

    Недостатки:

    • Большой вес и габариты, особенно при большой мощности: по большей части за счёт габаритов трансформатора и сглаживающего фильтра
    • Металлоёмкость
    • Применение линейных стабилизаторов напряжения вводит компромисс между стабильностью выходного напряжения и КПД: чем больше диапазон изменения напряжения, тем больше потери мощности.
    • При отсутствии стабилизатора на выход источника питания проникают пульсации с частотой 100Гц.

    В целом ничто не мешает применить в трансформаторном источнике питания импульсный стабилизатор напряжения, однако большее распространение получила схема с полностью импульсным преобразованием напряжения.

    Импульсный источник питания
    Широко распространённая схема импульсного источника питания состоит из следующих частей:

    • Входного фильтра, призванного предотвращать распространение импульсных помех в питающей сети
    • Входного выпрямителя, преобразующего переменное напряжение в пульсирующее
    • Фильтра, сглаживающего пульсации выпрямленного напряжения
    • Прерывателя (обычно мощного транзистора, работающего в ключевом режиме)
    • Цепей управления прерывателем (генератора импульсов, широтно-импульсного модулятора)
    • Импульсного трансформатора, который служит накопителем энергии импульсного преобразователя, формирования нескольких номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга)
    • Выходного выпрямителя
    • Выходных фильтров, сглаживающих высокочастотные пульсации и импульсные помехи.

    Достоинства такого блока питания:

    • Можно достичь высокого коэффициента стабилизации
    • Высокий КПД. Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.
    • Малые габариты и масса, обусловленные как меньшим выделением тепла на регулирующем элементе, так и меньшими габаритами трансформатора, благодаря тому, что последний работает на более высокой частоте.
    • Меньшая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность
    • Возможность включения в сети широкого диапазона напряжений и частот, или даже постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

    Однако имеют такие источники питания и недостатки, ограничивающие их применение:

    • Импульсные помехи. В связи с этим часто недопустимо применение импульсных источников питания для некоторых видов аппаратуры.
    • Невысокий cosφ, что требует включения компенсаторов коэффициента мощности.
    • Работа большей части схемы без гальванической развязки, что затрудняет обслуживание и ремонт.
    • Во многих импульсных источниках питания входной фильтр помех часто соединён с корпусом, а значит такие устройства требуют заземления.

    [Википедия]
     

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    основной источник питания
    -

    основной источник электроэнергии
    Источник для электроснабжения электроустановок, определенный в качестве основного при проектировании предприятия
    [ОСТ 45.55-99]

    См. также резервный источник питания


    1.26. Схема электроснабжения электроприемников особой группы I категории должна обеспечивать:

    2.2. Основными источниками питания должны служить электростанции и сети районных энергосистем. Исключение представляют большие предприятия с большим теплопотреблением, где основным источником питания может быть собственная электростанция (ТЭЦ). Но и в этом случае обязательно должна предусматриваться связь системы электроснабжения предприятия с сетью энергосистемы.

    [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]


    Для каждого медицинского помещения, оборудованного системой аварийного электроснабжения, требуется устройство световой сигнализации о состоянии основного и аварийного источника питания, которое должно быть установлено так, чтобы оно находилось под постоянным контролем медицинского персонала.
    [ГОСТ Р  50571.28-2006 (МЭК 60364-7-710:2002)]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > feed source

  • 14 pitch

    1. n смола; вар; дёготь; пек

    soft-wood tar pitch — хвойный пек; пек хвойного дегтя

    soft pitch — мягкий пек; мягкий битум; мягкий асфальт

    2. n битум
    3. v смолить
    4. n подача, бросок
    5. n бросаемый, подаваемый предмет
    6. n место удара мяча о землю

    the pitch of hay on the prong — навильник, количество сена, которое можно подцепить вилами

    7. n партия товара, выброшенного на рынок
    8. n мор. килевая качка
    9. n высота

    pitch modulation — модуляция высоты звука; вибрато

    10. n частота камертона
    11. n уровень; степень; сила; интенсивность; напряжение

    to fall to a low pitch — упасть, опуститься, понизиться

    12. n верх; вершина; высота
    13. n постоянное место; обычное место выступления

    a high pitch — торговля с автомобиля, повозки, лотка

    a low pitch — торговля, при которой товары разложены на земле

    14. n спорт. часть крикетного поля между линиями подающих, отбивающего и боулера
    15. n спорт. поле, площадка

    hockey pitch — хоккейная уклон, скат, наклон; покатость; угол наклона

    to pitch a field — выбрать поле сражения; расположить войска для боя

    16. n спорт. спец. тангаж
    17. n спорт. короткий и очень крутой участок восхождения
    18. n спорт. геол. падение
    19. n спорт. тех. шаг; модуль, питч

    pitch chain — калиброванная цепь, цепь с калиброванным шагом

    20. n амер. разг. шутки, прибаутки
    21. n амер. разг. болтовня

    to have a pitch — поговорить, поболтать

    22. n амер. разг. похвала; речь в защиту; восхваление
    23. n амер. разг. рекламирование; расхваливание на все лады
    24. n амер. разг. рекламное объявление, реклама
    25. n амер. разг. довод
    26. n амер. разг. предложение
    27. n амер. разг. план действий; линия; подход

    to tackle a problem again using a new pitch — подойти к решению проблемы по-новому, применить новый подход к решению проблемы

    28. n амер. разг. амер. разг. намерение, цель, задача

    I think I get the pitch — мне кажется, я понимаю, в чём задача

    29. n амер. разг. привал; стоянка; лагерь; бивуак
    30. n амер. разг. выбор места для лагеря, стоянки, привала
    31. n амер. разг. амер. сл. положение дел; расклад
    32. n амер. разг. карточная игра
    33. n амер. разг. объявление козыря
    34. v врывать, вбивать в землю; сооружать, устанавливать; ставить
    35. v располагаться; быть расположенным

    a village pitched on a hill — деревня, расположенная на холме

    pitch circle tapping — нарезание резьбы в отверстиях, центры которых расположены на одной оси

    36. v бросать, кидать, швырять; подбрасывать
    37. v спорт. бросать, подавать, посылать мяч
    38. v закручивать, гнать мяч
    39. v подавать мяч игроку с битой
    40. v играть за или вместо подающего
    41. v выставлять на продажу
    42. v амер. разг. продавать, торговать; продавать с лотка
    43. v мор. испытывать килевую качку

    our boat pitched heavily — нашу лодку бросало то вверх, то вниз

    44. v падать; ударяться
    45. v зарываться; погружаться

    he apologized for pitching into me yesterday — он извинился, что вчера так резко выступил против меня

    46. v муз. иметь, задавать или придавать определённую высоту, тон; настраивать; давать основной тон
    47. v устанавливать на определённом уровне, намечать; оценивать
    48. v иметь наклон, уклон; понижаться

    стравливать ; противопоставлять

    49. v амер. разг. рассказывать басни, преувеличивать, привирать
    50. v амер. разг. хвастаться, «привирать»
    51. v амер. разг. разг. прикорнуть, подремать
    52. v карт. объявлять козырь
    53. v карт. заходить с козыря
    54. v карт. мостить брусчаткой
    55. v карт. обтёсывать
    56. v карт. сооружать каменное основание
    57. v карт. облицовывать
    58. v карт. тех. зацеплять; соединять
    59. v карт. театр. проф. отправиться на гастроли или в поездку
    60. v карт. амер. разг. устроить вечеринку
    61. v карт. амер. разг. ухаживать, кадриться

    to pitch a tale, to pitch a fork — рассказывать басни, привирать, заливать

    Синонимический ряд:
    1. decline (noun) decline; descent; grade
    2. fall (noun) dive; fall; plunge; spill; sprawl; tumble
    3. fury (noun) ferocity; fierceness; fury; intensity; severity; vehemence; violence
    4. slope (noun) inclination; incline; slant; slope
    5. sound (noun) sound; tone
    6. spiel (noun) song and dance; spiel
    7. throw (noun) cast; fling; heave; hurl; throw; toss
    8. drop (verb) drop; fall; go down; keel over; slump; spill; sprawl; topple; tumble
    9. plunge (verb) burst; dive; drive; forge; lunge; plunge
    10. raise (verb) erect; put up; raise; set up
    11. seesaw (verb) cant; lurch; rock; roll; seesaw; swag; tilt; tilter; yaw
    12. throw (verb) buck off; cast; fire; fling; heave; hurl; launch; lob; shy; sling; throw; toss; unhorse; unseat

    English-Russian base dictionary > pitch

  • 15 operation

    operation n
    полет
    abnormal operations
    особые случаи выполнения полетов
    aborted operation
    прерванный полет
    accidental operation
    самопроизвольное срабатывание
    accident-free operation
    безаварийная эксплуатация
    acrobatics operation
    выполнение фигур высшего пилотажа
    aerial ambulance operation
    полет для оказания медицинской помощи
    aerial photography operation
    аэрофотосъемка
    aerial spotting operation
    полет с целью установления координат объекта поиска
    aerial survey operation
    полет для выполнения наблюдений с воздуха
    aerial work operation
    полет для выполнения работ
    aerodrome operation
    эксплуатация аэродрома
    aerodrome traffic circuit operation
    полет по кругу в районе аэродрома
    aerodrome vehicle operation
    эксплуатация аэродромных транспортных средств
    affect flight operation
    способствовать выполнению полета
    aircraft operation
    эксплуатация воздушного судна
    air operation for hire
    воздушная перевозка по найму
    air operation for remuneration
    воздушная перевозка за плату
    airport facilities operation
    эксплуатация оборудования аэропорта
    air transport operations
    авиатранспортные перевозки
    all-freight operations
    грузовые перевозки
    all-weather operations
    всепогодные полеты
    all-weather operations program
    программа всепогодных полетов
    approach operation
    заход на посадку
    associated crop control operation
    контроль состояния посевов по пути выполнения основного задания
    associated fire control operation
    противопожарное патрулирование по пути выполнения основного задания
    asymmetric flaps operation
    несимметрическая работа закрылков
    attempted operation
    опытная эксплуатация
    authorized operation
    разрешенный полет
    autorotative descend operation
    снижение на режиме авторотации
    available for daylight operation
    пригодный для полета только в светлое время суток
    aviation operations
    авиационные перевозки
    base leg operation
    полет на участке между третьим и четвертым разворотами
    business operation
    административный полет
    cancel operation
    отменять полет
    cargo operations
    грузовые перевозки
    cattle roundup operation
    облет стада
    centralized operations
    централизованные перевозки
    civil air operations
    полеты гражданских воздушных судов
    climb to cruise operation
    набор высоты до крейсерского режима
    come into operation
    вводить в эксплуатацию
    commercial air transport operations
    коммерческие воздушные перевозки
    commercial operation
    коммерческий полет
    communications operation
    ведение связи
    construction work operations
    строительные работы с помощью авиации
    crop control operation
    полет для контроля состояния посевов с воздуха
    cross-band operation
    работа на смежных диапазонах
    cut-off engine operation
    порядок выключения двигателя
    daylight operations
    полеты в светлое время суток
    deficit operations
    убыточные перевозки
    demonstration operation
    демонстрационный полет
    departure operations
    операции по подготовке рейса к вылету
    descending operation
    полет со снижением
    diverted attention from operation
    внимание, отвлеченное от управления воздушным судном
    domestic operations
    внутренние перевозки
    dual operation
    полет с инструктором
    emergency descent operation
    аварийное снижение
    emergency operations service
    аварийная служба
    engage in aircraft operation
    эксплуатировать воздушное судно
    engine run-up operation
    опробование двигателя
    en-route operation
    полет по маршруту
    excess operations
    прибыльные перевозки
    experimental operation
    экспериментальный полет
    ferry operation
    перегоночный полет
    Field Operation Branch
    Отдел осуществления проектов на местах
    Field Operations Section
    Секция осуществления проектов на местах
    (ИКАО) final approach operation
    полет на конечном этапе захода на посадку
    fire control operation
    противопожарное патрулирование с воздуха
    flight operation
    выполнение полетов
    flight operations expert
    эксперт по производству налетов
    flight operations instructor
    инструктор по производству полетов
    flight operations personnel
    персонал по обеспечению полетов
    flight operations system
    система обеспечения полетов
    fog dispersal operation
    операция по рассеиванию тумана
    frequency of operations
    частота полетов
    from landing operations
    действия после посадки
    general aviation operations
    полеты авиации общего назначения
    go-around operations
    действия при уходе на второй круг
    govern the operation
    руководить эксплуатацией
    ground handling operation
    наземное обслуживание рейсов
    ground operation
    наземная эксплуатация
    ground taxi from landing operation
    руление после посадки
    ground taxi operation
    руление по аэродрому
    high-level operations
    полеты на высоких эшелонах
    holding en-route operation
    полет в режиме ожидания на маршруте
    holding operation
    полет в режиме ожидания
    hover operation
    висение
    idling engine operation
    работа двигателя на режиме малого газа
    impair the operation
    нарушать работу
    improper operation
    неправильная эксплуатация
    in operation
    в эксплуатацию
    instructional operation
    учебный полет
    instrument flight rules operation
    полет по приборам
    intermediate approach operation
    выполнение промежуточного этапа захода на посадку
    international operations
    международные перевозки
    itinerant operation
    целевой полет
    landing operation
    посадка
    landing roll operation
    пробег
    level-off operation
    выравнивание
    local operations
    внутренние полеты
    long final straight-in-approach operation
    конечный удлиненный заход на посадку с прямой
    low flying operation
    полет на малой высоте
    low weather operations
    полеты по низким метеоминимумам
    maintenance operations
    работы по техническому обслуживанию
    make an operation hazardous
    создавать опасность полету
    missed approach operation
    уход на второй круг с этапа захода на посадку
    night operations
    полеты в темное время суток
    no-failure operation
    безотказная работа
    no-load operation
    холостой ход
    noncommercial operations
    некоммерческие перевозки
    nonscheduled operations
    нерегулярные перевозки
    normal cruise operation
    полет на крейсерском режиме
    normal initial climb operation
    набор высоты на начальном участке установленной траектории
    normal weather operation
    полет в нормальных метеоусловиях
    off-shore operations
    полеты в районе открытого моря
    operation conditions
    эксплуатационный режим
    operation instruction
    инструкция по производству полетов
    operation of aircraft
    эксплуатация воздушного судна
    operation phase
    этап полета
    operation regulations
    правила эксплуатации
    operations division
    служба перевозок
    operations inspector
    инспектор по производству полетов
    operations tower
    пункт управления полетами
    operation tests
    эксплуатационные испытания
    operation time limit
    максимально допустимое время работы
    overload operation
    эксплуатация с перегрузкой
    overwater operation
    полет над водным пространством
    paralleled operation
    параллельная работа
    part time operations
    временные полеты
    passenger operations
    пассажирские воздушные перевозки
    permission for operation
    разрешение на выполнение полета
    pleasure operation
    прогулочный полет
    pooled operations
    пульные перевозки
    positioning operation
    перебазирование
    power-on descend operation
    снижение с работающими двигателями
    power patrol operation
    патрулирование линий электропередач с воздуха
    power reduction operation
    уменьшение мощности
    practice operation
    тренировочный полет
    premature operation
    преждевременное срабатывание
    private operations
    частные перевозки
    provide operation
    обеспечивать эксплуатацию
    put in operation
    вводить в эксплуатацию
    regularity of operations
    регулярность полетов
    rescue operations
    операции по спасению
    restrict the operations
    накладывать ограничения на полеты
    resume normal operations
    возобновлять полеты
    roll-on operation
    пробег
    rotorcraft operations
    воздушные перевозки вертолетом
    rough engine operations
    перебои в работе двигателя
    rtouble-free operation
    безотказная работа
    run-down engine operation
    выбег двигателя
    run-on operation
    пробег
    run operation
    разбег
    safe operation
    безопасная эксплуатация
    search and rescue operations
    поисково-спасательные работы
    search operation
    поисковый полет
    see and avoid operations
    действия по обнаружению и уходу
    sequence of operation
    последовательность выполнения операций
    solo operation
    самостоятельный полет
    standing operation
    обслуживание в процессе стоянки
    starting engine operation
    запуск двигателя
    symmetric flap operation
    симметричная работа закрылков
    takeoff operation
    выполнение взлета
    taxing operation
    руление
    test operation
    испытательный полет
    touchdown operations
    действия в момент касания ВПП
    training operation
    тренировочный полет
    turn-around operation
    полет туда-обратно
    unauthorized operation
    неразрешенный полет
    uncontrolled descent operation
    неуправляемое снижение
    unparalleled operation
    непараллельная работа
    vertical rotocraft operation
    вертикальный взлет вертолета

    English-Russian aviation dictionary > operation

  • 16 stand-alone mode

    автономный режим управления (от основного устройства без использования дополнительных периферийных средств, таких как терминальные устройства, дисплеи и т.п.)

    Англо-русский словарь промышленной и научной лексики > stand-alone mode

  • 17 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 18 насос сплинкерной системы пожаротушения

    1. jockey pump

     

    насос сплинкерной системы пожаротушения
    жокей-насос

    -

    Принцип работы насосной установки спринклерной системы пожаротушения,  в  состав которой входит жокей-насос
    В случае падения давления воды в спринклерной системе, первым включается жокей-насос. Если расход воды небольшой и жокей-насос справляется с восполнением утечки, то через некоторое время после достижения верхнего предела заданного давления он выключится. Если же это не протечка, а открылось несколько спринклеров и расход воды значительный, то даже при работающем жокей-насосе давление продолжает падать. В этом случае, по сигналу второго реле давления, включается пожарный насос. Резервный агрегат включается в случае невыхода основного на рабочий режим. Независимо от того, потушен пожар или нет, пожарные насосы сами не отключаются, их можно выключить только вручную со шкафа управления.
    [ http://www.airweek.ru/pr_news_137.html]


    Jockey Pump

    A jockey pump is a small pump connected to a fire sprinkler system and is intended to maintain pressure in a fire protection piping system to an artificially high level so that the operation of a single fire sprinkler will cause an appreciable pressure drop which will be easily sensed by the fire pump automatic controller, causing the fire pump to start. The jockey pump is essentially a portion of the fire pump's control system.
    In the U.S.
    The application of a jockey pump in a fire protection system is covered by documents produced by the NFPA (National Fire Protection Association,) known as NFPA 20 "Fire Pumps" Standard and NFPA 13 "Design and Installation of Fire Sprinkler Systems". These must be inspected as with any other part of the system per NFPA 25 "Inspection and Testing of Water-Based Fire Protection Systems".Fire protection systems are governed in most states by statute, building code, and/or fire code.
    In India
    This jockey pump is also a must while designing the Fire Hydrants Pumps skid for Industrial installations.While the logic followed for the effective operation of the fire fighting pumps may depend upon or vary as per the regulations in a particular country, in India, the pump manufacturers like Mather-Platt with standard Fire Pumps generally adhere to the TAC guidelines (Tariff Advisory Committee guidelines).
    Although India's premier manufacturer Kirloskar Brothers Limited, with approvals from UL and FM Global, LPCB, ASIB: follows TAC guidelines (Tariff Advisory Committee guidelines), or FM GLobal and UL standards depending on the clients needs.
    If one is following the TAC guidelines, follow this approach

    *Once the complete fire fighting circuit is under pressure by operating the pumps for sufficient time provided all the fire hydrant valves (Single yard hydrants, Fire escape hydrants, etc)are closed, the main pump stops.
    *Due to some leakages somewhere in the fire fighting piping circuit, when there is a loss of system pressure which will be constantly monitored by the Pressure sensors in the circuit, the jockey pumps receives a signal to start from the automatic control panel, and will run to augment this loss of pressure by pumping more water into the circuit. Once the pressure is maintained as per the set point, it stops.
    *If any hydrant valve is opened due to some fire and water is consumed, then the jockey pump due to its small capacity compared to the main pumps (one running, one stand-by)in terms of volumetric capacity, the main pump will start and then the jockey immediately stops.This way jockey pump is important which senses the loss of pressure in the circuit first.

    [ http://en.wikipedia.org/wiki/Jockey_pump#Jockey_Pump]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > насос сплинкерной системы пожаротушения

  • 19 centralized UPS

    1. ИБП для централизованных систем питания

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > centralized UPS

  • 20 jockey pump

    1. насос сплинкерной системы пожаротушения

     

    насос сплинкерной системы пожаротушения
    жокей-насос

    -

    Принцип работы насосной установки спринклерной системы пожаротушения,  в  состав которой входит жокей-насос
    В случае падения давления воды в спринклерной системе, первым включается жокей-насос. Если расход воды небольшой и жокей-насос справляется с восполнением утечки, то через некоторое время после достижения верхнего предела заданного давления он выключится. Если же это не протечка, а открылось несколько спринклеров и расход воды значительный, то даже при работающем жокей-насосе давление продолжает падать. В этом случае, по сигналу второго реле давления, включается пожарный насос. Резервный агрегат включается в случае невыхода основного на рабочий режим. Независимо от того, потушен пожар или нет, пожарные насосы сами не отключаются, их можно выключить только вручную со шкафа управления.
    [ http://www.airweek.ru/pr_news_137.html]


    Jockey Pump

    A jockey pump is a small pump connected to a fire sprinkler system and is intended to maintain pressure in a fire protection piping system to an artificially high level so that the operation of a single fire sprinkler will cause an appreciable pressure drop which will be easily sensed by the fire pump automatic controller, causing the fire pump to start. The jockey pump is essentially a portion of the fire pump's control system.
    In the U.S.
    The application of a jockey pump in a fire protection system is covered by documents produced by the NFPA (National Fire Protection Association,) known as NFPA 20 "Fire Pumps" Standard and NFPA 13 "Design and Installation of Fire Sprinkler Systems". These must be inspected as with any other part of the system per NFPA 25 "Inspection and Testing of Water-Based Fire Protection Systems".Fire protection systems are governed in most states by statute, building code, and/or fire code.
    In India
    This jockey pump is also a must while designing the Fire Hydrants Pumps skid for Industrial installations.While the logic followed for the effective operation of the fire fighting pumps may depend upon or vary as per the regulations in a particular country, in India, the pump manufacturers like Mather-Platt with standard Fire Pumps generally adhere to the TAC guidelines (Tariff Advisory Committee guidelines).
    Although India's premier manufacturer Kirloskar Brothers Limited, with approvals from UL and FM Global, LPCB, ASIB: follows TAC guidelines (Tariff Advisory Committee guidelines), or FM GLobal and UL standards depending on the clients needs.
    If one is following the TAC guidelines, follow this approach

    *Once the complete fire fighting circuit is under pressure by operating the pumps for sufficient time provided all the fire hydrant valves (Single yard hydrants, Fire escape hydrants, etc)are closed, the main pump stops.
    *Due to some leakages somewhere in the fire fighting piping circuit, when there is a loss of system pressure which will be constantly monitored by the Pressure sensors in the circuit, the jockey pumps receives a signal to start from the automatic control panel, and will run to augment this loss of pressure by pumping more water into the circuit. Once the pressure is maintained as per the set point, it stops.
    *If any hydrant valve is opened due to some fire and water is consumed, then the jockey pump due to its small capacity compared to the main pumps (one running, one stand-by)in terms of volumetric capacity, the main pump will start and then the jockey immediately stops.This way jockey pump is important which senses the loss of pressure in the circuit first.

    [ http://en.wikipedia.org/wiki/Jockey_pump#Jockey_Pump]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > jockey pump

См. также в других словарях:

  • Режим работы двигателя — состояние, характеризуемое совокупностью параметров двигателя в конкретных условиях полёта при определенном постоянном положении основного регулирующего двигатель устройства (рычага управления двигателем при ручном управлении или задатчика… …   Энциклопедия техники

  • режим работы двигателя — режим работы двигателя — состояние, характеризуемое совокупностью параметров двигателя в конкретных условиях полёта при определенном постоянном положении основного регулирующего двигатель устройства (рычага управления двигателем при ручном… …   Энциклопедия «Авиация»

  • режим работы двигателя — режим работы двигателя — состояние, характеризуемое совокупностью параметров двигателя в конкретных условиях полёта при определенном постоянном положении основного регулирующего двигатель устройства (рычага управления двигателем при ручном… …   Энциклопедия «Авиация»

  • Уголовно-правовой режим несовершеннолетних в России — (особенности уголовной ответственности несовершеннолетних, ювенальное уголовное право)  установленный уголовным законодательством России специфический уголовно правовой режим, предусматривающий значительное смягчение репрессивных мер в… …   Википедия

  • СТО 17330282.27.140.001-2006: Методики оценки технического состояния основного оборудования гидроэлектростанций — Терминология СТО 17330282.27.140.001 2006: Методики оценки технического состояния основного оборудования гидроэлектростанций: вид технического состояния : категория технического состояния, характеризуемая соответствием или несоответствием… …   Словарь-справочник терминов нормативно-технической документации

  • Система управления запуском и розжигом авиадвигателя — Система управления запуском и розжигом ГТД служит для обеспечения перевода авиадвигателя из нерабочего состояния в установившийся режим малого газа, который характеризуется наименьшими оборотами турбины, при которых он может устойчиво работать… …   Википедия

  • Аэродинамика самолёта Боинг 737 — Bóeing 737 (русск. Боинг 737) самый популярный в мире узкофюзеляжный реактивный пассажирский самолёт. Boeing 737 является самым массовo производимым реактивным пассажирским самолётом за всю историю пассажирского авиастроения (6160 машин заказано… …   Википедия

  • автоматический — 3.3.1 автоматический пробоотборник (automatic sampler): Устройство, используемое для извлечения представительной пробы жидкости, протекающей по трубопроводу. Примечание Автоматический пробоотборник обычно состоит из зонда (щупа), экстрактора… …   Словарь-справочник терминов нормативно-технической документации

  • Ту-22М — Не следует путать с Ту 22. Ту 22М …   Википедия

  • Словарь метротерминов — Эта страница глоссарий. Приведены основные понятия, термины и аббревиатуры, встречающиеся в литературе о метрополитене и железной дороге. Подавляющее большинство сокращений пришли в метрополитен с железной дороги напрямую или образованы по… …   Википедия

  • Ан-140 — Ан 140 …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»